

The Observability of **Recoiling Black Holes** as Offset Quasars

Laura Blecha

Einstein and JSI Fellow University of Maryland with Paul Torrey, Mark Vogelsberger, Shy Genel, Volker Springel, Debora Sijacki, Greg Snyder, Simeon Bird, Dylan Nelson, Dandan Xu, & Lars Hernquist

> Black Holes in Dense Stellar Clusters Aspen, CO, Jan, 2015

Gravitational-Wave (GW) Recoil

- GW beaming imparts a "kick" to the merged BH
- Max kick is ~ 5000 km/s! (Campanelli et al. 2007, Lousto et al 2012)
- For randomly-oriented, high spins, 34% of kicks are
 > 500 km/s (Lousto et al. 2013)
- Kicks are lower if *spin alignment* occurs prior to merger (more on this later...) (Bogdanovic et al 2007, Dotti et al. 2009, 2012, Kesden et al. 2010, Miller & Krolik 2013)

Recoiling AGN candidates

Kinematic offsets

see Komossa et al. 2008; Shields et al. 2009; Robinson et al. 2010

Spatial offsets

see Batcheldor et al. 2010; Jonker et al. 2010; **Koss, LB et al. 2014 Kinematic and spatial**

offsets

see Civano et al. 2010, 12, Blecha et al. 2013

Searches for spatially-offset AGN

Civano et al. in prep.

- Survey of galaxies in HST-COSMOS (1.7 deg²)
- Pilot study of ~ 5000
 galaxies: ~ 0.3% have
 significant offsets (>50)
 between AGN & host
 centroid

Modeling recoiling AGN in cosmological simulations: Motivation

- Want to design a targeted, systematic search for offset AGN
 - How many recoiling AGN do we expect to be observable (as a function of L, Mbh, z, etc.)?
 - What are the most likely host galaxies of observable, offset AGN?
- From semi-analytic merger tree models: up to a few tens per deg² could be observable (Volonteri & Madau 2008)
- Want to know dependence on the BH spin distribution. Can we learn something about BH spins from observations of offset AGN?

Hydro effects matter!

- Recoils trajectories
 suppressed in *gas-rich major mergers* (LB et al. 2011, see also Guedes et al. 2011, Sijacki et al. 2011)
- Spin alignment prior to merger by a circumbinary
 gas disk (Bogdanovic et al 2007, Dotti et al. 2009, 2012, Miller & Krolik 2013)
- Maximum kick: 5000 km/s
- With perfectly aligned spins: <200 km/s

Recoiling AGN accretion disks

- Accretion rate from an isolated, thin viscous disk decreases as $\dot{M} \propto t^{-19/16}$
- For recoiling AGN: shorter
 'bright' AGN phase, but *longer total AGN lifetime* (vs. constant
 M model; LB et al. 2011)

Modeling offset AGN in cosmological simulations (*Blecha et al. in prep*)

Modeling offset AGN in cosmological simulations (*Blecha et al. in prep*)

Recoil kick distributions (from BH mergers in Illustris)

Blecha et al., in prep

Recoiling AGN source counts

Blecha et al., in prep

Recoiling AGN source counts

- Distribution of dR is dominated by largest separations (> kpc) and by events with v_k/v_{esc} ~ 1
- Observable offset AGN also dominated by low Eddington ratios
- Survey sensitivity will be a more limiting factor than spatial resolution

Cold gas fraction vs. stellar mass — all BH merger hosts

Cold gas fraction vs. stellar mass

All BH merger hosts

Offset AGN hosts (random spin model)

Blecha et al., in prep

Cold gas fraction vs. stellar mass

Blecha et al., in prep

Offset AGN host stellar mass

(random spin model)

- At low z, host mass distribution is broad & is bound by the simulation resolution limit.
- For random spins, **almost all BH mergers in low-mass galaxies** at z<0.1 result in spatially offset AGN.
- For highest mass hosts, ~1% of mergers yield observable offsets for random spins. (With efficient spin alignment, closer to 0%).
- For z>0.2, the host mass distribution for offset AGN cuts off at the low mass end and the high mass end
- Thus, for z>0.2, there is an apparent
 preference for offset AGN hosts
 with log M^{*} ~ 10-10.5.

Summary

- Until actual GW detections, observations of GW recoil events are likely the best prospects for identifying SMBH mergers
- Promising candidate recoiling AGN have been identified, and more systematic searches are underway
- For spatially-offset AGN, large offsets (~1-100 kpc) dominate thus, flux sensitivity is a more limiting factor than resolution
- Several per deg² may be observable in the most optimistic case
- Offset AGN appear to inhabit preferred host galaxies
- At low redshift (z<0.1), host mass distribution is broad, and most BH mergers in low-mass galaxies (M_{*}<10) may result in observable spatial offsets
- At higher redshift (z>0.2), host mass distribution is peaked around log M_{*} ~ 10 - 10.5.
- Find tentative indications that recoiling AGN may be able to distinguish between models for BH spin alignment